Publication Type

Journal Article

Version

publishedVersion

Publication Date

12-1996

Abstract

Ecological inference, as traditionally defined, is the process of using aggregate (i.e., ecological) data to infer discrete individual-level relationships of interest when individual-level data are not available. Existing methods of ecological inference generate very inaccurate conclusions about the empirical world- which thus gives rise to the ecological inference problem. Most scholars who analyze aggregate data routinely encounter some form of this problem. EI (by Gary King) and EzI (by Kenneth Benoit and Gary King) are freely available software that implement the statistical and graphical methods detailed in Gary King's book A Solution to the Ecological Inference Problem. These methods make it possible to infer the attributes of individual behavior from aggregate data. EI works within the statistics program Gauss and will run on any computer hardware and operating system that runs Gauss (the Gauss module, CML, or constrained maximum likelihood- by Ronald J. Schoenberg- is also required). EzI is a menu-oriented stand-alone version of the program that runs under MS-DOS (and soon Windows 95, OS/2, and HP-UNIX). EI allows users to make ecological inferences as part of the powerful and open Gauss statistical environment. In contrast, EzI requires no additional software, and provides an attractive menu-based user interface for non-Gauss users, although it lacks the flexibility afforded by the Gauss version. Both programs presume that the user has read or is familiar with A Solution to the Ecological Inference Problem.

Discipline

Models and Methods | Political Science

Research Areas

Political Science

Publication

Social Science Computer Review

Volume

14

Issue

4

First Page

433

Last Page

438

ISSN

0894-4393

Identifier

10.1177/089443939601400405

Publisher

SAGE Publications

Copyright Owner and License

Publisher

Share

COinS