Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar

Publication Type

Journal Article

Publication Date

12-2018

Abstract

This study used remote sensing imagery to characterize land use/cover patterns and to derive land surface temperature (LST) of Greater Yangon, the largest urban agglomeration in Myanmar, to provide insights into the association between land use/cover and seasonal, daytime, and nighttime LST change. Analysis of Landsat images from 1987 to 2015 showed urban expansion radiating from the city center and along prominent rivers, with major increases in built-up land (6.4%) and grassland (10.1%) and consequent decline in agricultural land (17%). Examination of MODIS LST showed that agricultural land was warmer than the city core during daytime in hot seasons, while in cold seasons, the city core was warmer than its rural surroundings during both daytime and nighttime. Correlation analysis revealed stronger association between built-up land and nighttime LST from 2000 to 2015, suggesting an increased surface urban heat island effect. Furthermore, this study highlighted two main differences from prior work on the influences of land use/cover on LST. First, the predominant land use/cover type that had great overall impact on LST was agricultural land, marked by its statistically significant correlation coefficients across all time periods of analysis. Such finding emphasized the influence of agriculture and related practices on the atmosphere and climate system. Second, the temporal analysis of LST highlighted a stronger and more complicated role water played because of its negative correlations with daytime LST and positive correlations with nighttime LST. The findings of this study underscored more complex effects of land use/cover on the spatial and temporal variations of LST in Yangon, compared to prior work that generally reported high LST in the urban areas. These insights improve the understanding of the land change consequences on the temporal dynamics of LST and can support sustainable land use planning for the better well-being of the inhabitants in Greater Yangon.

Discipline

Physical and Environmental Geography

Publication

Science of the Total Environment

Volume

643

First Page

738

Last Page

750

ISSN

0048-9697

Identifier

10.1016/j.scitotenv.2018.06.209

Publisher

Elsevier

Additional URL

https://doi.org/10.1016/j.scitotenv.2018.06.209

This document is currently not available here.

Share

COinS