Publication Type
Conference Paper
Version
submittedVersion
Publication Date
4-2007
Abstract
A new methodology is proposed to estimate theoretical prices of financial contingent-claims whose values are dependent on some other underlying financial assets. In the literature the preferred choice of estimator is usually maximum likelihood (ML). ML has strong asymptotic justification but is not necessarily the best method in finite samples. The present paper proposes instead a simulation-based method that improves the finite sample performance of the ML estimator while maintaining its good asymptotic properties. The methods are implemented and evaluated here in the Black-Scholes option pricing model and in the Vasicek bond pricing model, but have wider applicability. Monte Carlo studies show that the proposed procedures achieve bias reductions over ML estimation in pricing contingent claims. The bias reductions are sometimes accompanied by reductions in variance, leading to significant overall gains in mean squared estimation error. Empirical applications to US treasury bills highlight the differences between the bond prices implied by the simulation-based approach and those delivered by ML. Some consequences for the statistical testing of contingent-claim pricing models are discussed.
Discipline
Econometrics
Research Areas
Econometrics
Publication
Third Symposium on Econometric Theory and Applications, Hong Kong
Citation
YU, Jun.
Simulation-Based Estimation of Contingent-Claims Prices. (2007). Third Symposium on Econometric Theory and Applications, Hong Kong.
Available at: https://ink.library.smu.edu.sg/soe_research/968
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.