Bias Reduction Using Stochastic Approximation
Publication Type
Journal Article
Publication Date
1998
Abstract
The paper studies stochastic approximation as a technique for bias reduction. The proposed method does not require approximating the bias explicitly, nor does it rely on having independent identically distributed (i.i.d.) data. The method always removes the leading bias term, under very mild conditions, as long as auxiliary samples from distributions with given parameters are available. Expectation and variance of the bias-corrected estimate are given. Examples in sequential clinical trials (non-i.i.d. case), curved exponential models (i.i.d. case) and length-biased sampling (where the estimates are inconsistent) are used to illustrate the applications of the proposed method and its small sample properties.
Discipline
Economics
Research Areas
Econometrics
Publication
Australian and New Zealand Journal of Statistics
Volume
40
Issue
1
First Page
43
Last Page
52
ISSN
1369-1473
Identifier
10.1111/1467-842x.00005
Publisher
Wiley
Citation
Leung, Denis H. Y. and Wang, Y. G..
Bias Reduction Using Stochastic Approximation. (1998). Australian and New Zealand Journal of Statistics. 40, (1), 43-52.
Available at: https://ink.library.smu.edu.sg/soe_research/505
Additional URL
https://doi.org/10.1111/1467-842x.00005