Publication Type
Journal Article
Version
publishedVersion
Publication Date
12-2000
Abstract
This paper reviews the general Bayesian approach to parameter estimation in stochastic volatility models with posterior computations performed by Gibbs sampling. The main purpose is to illustrate the ease with which the Bayesian stochastic volatility model can now be studied routinely via BUGS (Bayesian inference using Gibbs sampling), a recently developed, user-friendly, and freely available software package. It is an ideal software tool for the exploratory phase of model building as any modifications of a model including changes of priors and sampling error distributions are readily realized with only minor changes of the code. However, due to the single move Gibbs sampler, convergence can be slow. BUGS automates the calculation of the full conditional posterior distributions using a model representation by directed acyclic graphs. It contains an expert system for choosing an effective sampling method for each full conditional. Furthermore, software for convergence diagnostics and statistical summaries is available for the BUGS output. The BUGS implementation of a stochastic volatility model is illustrated using a time series of daily Pound/Dollar exchange rates.
Keywords
Stochastic volatility, Gibbs sampler, BUGS, Heavy-tailed distributions, Non-Gaussian nonlinear time series models, Leverage effect
Discipline
Econometrics | Finance
Research Areas
Finance
Publication
Econometrics Journal
Volume
3
Issue
2
First Page
198
Last Page
215
ISSN
1368-4221
Identifier
10.1111/1368-423X.00046
Publisher
Wiley
Citation
Meyer, Renate and YU, Jun.
BUGS for a Bayesian analysis of stochastic volatility models. (2000). Econometrics Journal. 3, (2), 198-215.
Available at: https://ink.library.smu.edu.sg/soe_research/502
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1111/1368-423X.00046