Publication Type

Journal Article

Version

publishedVersion

Publication Date

10-2019

Abstract

This paper studies non-separable models with a continuous treatment when the dimension of the control variables is high and potentially larger than the effective sample size. We propose a three-step estimation procedure to estimate the average, quantile, and marginal treatment effects. In the first stage we estimate the conditional mean, distribution, and density objects by penalized local least squares, penalized local maximum likelihood estimation, and numerical differentiation, respectively, where control variables are selected via a localized method of L-1-penalization at each value of the continuous treatment. In the second stage we estimate the average and marginal distribution of the potential outcome via the plug-in principle. In the third stage, we estimate the quantile and marginal treatment effects by inverting the estimated distribution function and using the local linear regression, respectively. We study the asymptotic properties of these estimators and propose a weighted-bootstrap method for inference. Using simulated and real datasets, we demonstrate that the proposed estimators perform well in finite samples. (C) 2019 Elsevier B.V. All rights reserved.

Keywords

Average treatment effect;High dimension;Least absolute shrinkage and selection operator (Lasso);Nonparametric quantile regression;Nonseparable models;Quantile treatment effect;Unconditional average structural derivative

Discipline

Econometrics | Economic Theory

Research Areas

Econometrics; Economic Theory

Publication

Journal of Econometrics

Volume

212

Issue

2

First Page

646

Last Page

677

ISSN

0304-4076

Identifier

10.1016/j.jeconom.2019.06.004

Publisher

Elsevier: 24 months

Share

COinS