Publication Type

Journal Article

Version

publishedVersion

Publication Date

2-2019

Abstract

We propose semiparametrically efficient estimators for general integrated volatility functionals of multivariate semimartingale processes. A plug-in method that uses nonparametric estimates of spot volatilities is known to induce high-order biases that need to be corrected to obey a central limit theorem. Such bias terms arise from boundary effects, the diffusive and jump movements of stochastic volatility and the sampling error from the nonparametric spot volatility estimation. We propose a novel jackknife method for bias correction. The jackknife estimator is simply formed as a linear combination of a few uncorrected estimators associated with different local window sizes used in the estimation of spot volatility. We show theoretically that our estimator is asymptotically mixed Gaussian, semiparametrically efficient, and more robust to the choice of local windows. To facilitate the practical use, we introduce a simulation-based estimator of the asymptotic variance, so that our inference is derivative-free, and hence is convenient to implement.

Keywords

high-frequency data, jackknife, Semimartingale, spot volatility

Discipline

Econometrics

Research Areas

Econometrics

Publication

Annals of Statistics

Volume

47

Issue

1

First Page

156

Last Page

176

ISSN

0090-5364

Identifier

10.1214/18-AOS1684

Publisher

Institute of Mathematical Statistics (IMS)

Copyright Owner and License

Publisher

Additional URL

https://doi.org/10.1214/18-AOS1684

Included in

Econometrics Commons

Share

COinS