Publication Type
Working Paper
Version
publishedVersion
Publication Date
11-2016
Abstract
This paper studies estimation of a panel data model with latent structures where individuals can be classified into different groups where slope parameters are homogeneous within the same group but heterogeneous across groups. To identify the unknown group structure of vector parameters, we design an algorithm called Panel-CARDS which is a systematic extension of the CARDS procedure proposed by Ke, Fan, and Wu (2015) in a cross section framework. The extension addresses the problem of comparing vector coefficients in a panel model for homogeneity and introduces a new concept of controlled classification of multidimensional quantities called the segmentation net. We show that the Panel-CARDS method identifies group structure asymptotically and consistently estimates model parameters at the same time. External information on the minimum number of elements within each group is not required but can be used to improve the accuracy of classification and estimation in finite samples. Simulations evaluate performance and corroborate the asymptotic theory in several practical design settings. Two empirical economic applications are considered: one explores the effect of income on democracy by using cross-country data over the period 1961-2000; the other examines the effect of minimum wage legislation on unemployment in 50 states of the United States over the period 1988-2014. Both applications reveal the presence of latent groupings in these panel data.
Keywords
CARDS, Clustering, Heterogeneous slopes, Income and democracy, Minimum wage and employment, Oracle estimator, Panel structure model
Discipline
Econometrics | Income Distribution
Research Areas
Econometrics
First Page
1
Last Page
57
Identifier
10.2139/ssrn.2881906
Publisher
Yale University, Cowles Foundation Discussion Paper No. 2063
City or Country
New Haven, CN
Citation
WANG, Wuyi; PHILLIPS, Peter C. B.; and SU, Liangjun.
Homogeneity pursuit in panel data models: Theory and applications. (2016). 1-57.
Available at: https://ink.library.smu.edu.sg/soe_research/2055
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.2139/ssrn.2881906
Comments
Published in Journal of Applied Econometrics, 2018, 33 (6), 797-815, https://doi.org/10.1002/jae.2632