Publication Type
Journal Article
Version
submittedVersion
Publication Date
1-2016
Abstract
This paper considers stationary regression models with near-collinear regressors. Limit theory is developed for regression estimates and test statistics in cases where the signal matrix is nearly singular in finite samples and is asymptotically degenerate. Examples include models that involve evaporating trends in the regressors that arise in conditions such as growth convergence. Structural equation models are also considered and limit theory is derived for the corresponding instrumental variable (IV) estimator, Wald test statistic, and overidentification test when the regressors are endogenous. It is shown that near-singular designs of the type considered here are not completely fatal to least squares inference, but do inevitably involve size distortion except in special Gaussian cases. In the endogenous case, IV estimation is inconsistent and both the block Wald test and Sargan overidentification test are conservative, biasing these tests in favor of the null.
Keywords
Endogeneity; Instrumental variable; Singular signal matrix; Size distortion; Structural equation
Discipline
Behavioral Economics | Growth and Development
Research Areas
International Economics
Publication
Advances in Econometrics
Volume
36
First Page
461
Last Page
486
ISSN
0731-9053
Identifier
10.1108/S0731-905320160000036022
Publisher
JAI Press
Citation
Peter C. B. PHILLIPS.
Inference in near-singular regression. (2016). Advances in Econometrics. 36, 461-486.
Available at: https://ink.library.smu.edu.sg/soe_research/1948
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org./10.1108/S0731-905320160000036022