Publication Type
Journal Article
Version
acceptedVersion
Publication Date
11-2014
Abstract
Central place theory is a key building block of economic geography and an empirically plausible description of city systems. This paper provides a rationale for central place theory via a dynamic programming formulation of the social planner's problem of city hierarchy. We show that there must be one and only one immediate smaller city between two neighboring larger-sized cities in any optimal solution. If the fixed cost of setting up a city is a power function, then the immediate smaller city will be located in the middle, confirming the locational pattern suggested by Christaller. We also show that the solution can be approximated by iterating the mapping defined by the dynamic programming problem. The main characterization results apply to a general hierarchical problem with recursive divisions.
Keywords
Central place theory, City hierarchy, Dynamic programming, Principle of optimality, Fixed point
Discipline
Behavioral Economics | Economics | Economic Theory | Urban Studies and Planning
Research Areas
Applied Microeconomics
Publication
Journal of Economic Theory
Volume
154
First Page
245
Last Page
273
ISSN
0022-0531
Identifier
10.1016/j.jet.2014.09.018
Publisher
Elsevier
Citation
HSU, Wen-Tai; HOLMES, Thomas J.; and MORGAN, Frank.
Optimal City Hierarchy: A Dynamic Programming Approach to Central Place Theory. (2014). Journal of Economic Theory. 154, 245-273.
Available at: https://ink.library.smu.edu.sg/soe_research/1642
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1016/j.jet.2014.09.018
Included in
Behavioral Economics Commons, Economic Theory Commons, Urban Studies and Planning Commons