Publication Type
Journal Article
Version
acceptedVersion
Publication Date
5-2015
Abstract
Motivated by a recent study of Bao and Ullah (2007a) on finite sample properties of MLE in the pure SAR (spatial autoregressive) model, a general method for third-order bias and variance corrections on a nonlinear estimator is proposed based on stochastic expansion and bootstrap. Working with concentrated estimating equation simplifies greatly the high-order expansions for bias and variance; a simple bootstrap procedure overcomes a major difficulty in analytically evaluating expectations of various quantities in the expansions. The method is then studied in detail using a more general SAR model, with its effectiveness in correcting bias and improving inference fully demonstrated by extensive Monte Carlo experiments. Compared with the analytical approach, the proposed approach is much simpler and has a much wider applicability. The validity of the bootstrap procedure is formally established. The proposed method is then extended to the case of more than one nonlinear estimator.
Keywords
Third-order bias, Third-order variance, Bootstrap, Concentrated estimating equation, Monte Carlo, Spatial layout, Stochastic expansion
Discipline
Econometrics
Research Areas
Econometrics
Publication
Journal of Econometrics
Volume
186
Issue
1
First Page
178
Last Page
200
ISSN
0304-4076
Identifier
10.1016/j.jeconom.2014.07.003
Publisher
Elsevier
Embargo Period
7-22-2014
Citation
YANG, Zhenlin.
A General Method for Third-Order Bias and Variance Corrections on a Nonlinear Estimator. (2015). Journal of Econometrics. 186, (1), 178-200.
Available at: https://ink.library.smu.edu.sg/soe_research/1586
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1016/j.jeconom.2014.07.003