Publication Type
Journal Article
Version
acceptedVersion
Publication Date
7-2012
Abstract
It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in finite discrete samples and in large in-fill samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein-Uhlenbeck process with a known long run mean when discretely sampled data are available. The first expression mimics the bias formula of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the near unit root situation and is empirically realistic for financial time series. An improvement is made in the second expression where a nonlinear correction term is included into the bias formula. It is shown that the nonlinear term is important in the near unit root situation. Simulations indicate that the second expression captures the magnitude, the curvature and the non-monotonicity of the actual bias better than the first expression.
Keywords
Least squares, Maximum likelihood, Discrete sampling, Continuous record, Near unit root.
Discipline
Econometrics
Research Areas
Econometrics
Publication
Journal of Econometrics
Volume
169
Issue
1
First Page
114
Last Page
122
ISSN
0304-4076
Identifier
10.1016/j.jeconom.2012.01.004
Publisher
Elsevier
Citation
YU, Jun.
Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models. (2012). Journal of Econometrics. 169, (1), 114-122.
Available at: https://ink.library.smu.edu.sg/soe_research/1348
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1016/j.jeconom.2012.01.004