Publication Type
Working Paper
Version
publishedVersion
Publication Date
2010
Abstract
This paper introduces a parsimonious and yet flexible nonnegative semiparametric model to forecast financial volatility. The new model extends the linear nonnegative autoregressive model of Barndorff-Nielsen & Shephard (2001) and Nielsen & Shephard (2003) by way of a power transformation. It is semiparametric in the sense that the distributional form of its error component is left unspecified. The statistical properties of the model are discussed and a novel estimation method is proposed. Asymptotic properties are established for the new estimation method. Simulation studies validate the new estimation method. The out-of-sample performance of the proposed model is evaluated against a number of standard methods, using data on S&P 500 monthly realized volatilities. The competing models include the exponential smoothing method, a linear AR(1) model, a log-linear AR(1) model, and two long-memory ARFIMA models. Various loss functions are utilized to evaluate the predictive accuracy of the alternative methods. It is found that the new model generally produces highly competitive forecasts.
Keywords
Autoregression, nonlinear/non-Gaussian time series, realized volatility, semiparametric model, volatility forecast.
Discipline
Econometrics
Research Areas
Econometrics
Citation
Eriksson, A.; Preve, D.; and YU, Jun.
Forecasting Realized Volatility Using a Nonnegative Semiparametric Time Series Model. (2010).
Available at: https://ink.library.smu.edu.sg/soe_research/1296
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://www.mysmu.edu/faculty/yujun/Research/PEY.pdf