Publication Type
Working Paper
Version
publishedVersion
Publication Date
11-2009
Abstract
It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in nite discrete samples and in large in-…ll samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein-Uhlenbeck process with a known long run mean when discretely sampled data are available. The first expression mimics the bias formula of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the near unit root situation and is empirically realistic for financial time series. An improvement is made in the second expression where a nonlinear correction term is included into the bias formula. It is shown that the nonlinear term is important in the near unit root situation. Simulations indicate that the second expression captures the magnitude, the curvature and the non-monotonicity of the actual bias better than the first expression.
Keywords
Least squares, Maximum likelihood, Discrete sampling, Continuous record, Near unit root.
Discipline
Econometrics
Research Areas
Econometrics
First Page
1
Last Page
27
Publisher
SMU Economics and Statistics Working Paper Series, No. 16-2009
City or Country
Singapore
Citation
YU, Jun.
Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models. (2009). 1-27.
Available at: https://ink.library.smu.edu.sg/soe_research/1152
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Comments
Published in Journal of Econometrics, 2012, https://doi.org/10.1016/j.jeconom.2012.01.004