Publication Type
Conference Paper
Version
submittedVersion
Publication Date
7-2007
Abstract
We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is also robust against outliers and requires weaker moment conditions. More importantly, it allows us to characterize the heterogeneous impact of variables on different points (quantiles) of a response distribution. We derive the limiting distribution of the new estimator. Simulation results show that the new estimator performs well in finite samples at various quantile points. In the special case of median restriction, it outperforms the conventional QML estimator without taking into account of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without considering the heteroscedasticity.
Keywords
Spatial Autoregressive Model; Quantile Regression; Instrumental Variable; QuasiMaximum Likelihood; GMM; Robustness
Discipline
Econometrics
Research Areas
Econometrics
Publication
The 1st World Conference of the Spatial Econometrics Association
Citation
YANG, Zhenlin.
Instrumental Variable Quantile Estimation of Spatial Autoregressive Models. (2007). The 1st World Conference of the Spatial Econometrics Association.
Available at: https://ink.library.smu.edu.sg/soe_research/1038
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://econpapers.repec.org/paper/eabdevelo/1563.htm