Alternative Title

https://doi.org/10.48550/arXiv.2410.15019

Publication Type

Conference Proceeding Article

Version

acceptedVersion

Publication Date

11-2024

Abstract

In the rapidly evolving field of conversational AI, Ontology Expansion (OnExp) is crucial for enhancing the adaptability and robustness of conversational agents. Traditional models rely on static, predefined ontologies, limiting their ability to handle new and unforeseen user needs. This survey paper provides a comprehensive review of the state-of-the-art techniques in OnExp for conversational understanding. It categorizes the existing literature into three main areas: (1) New Intent Discovery, (2) New Slot-Value Discovery, and (3) Joint OnExp. By examining the methodologies, benchmarks, and challenges associated with these areas, we highlight several emerging frontiers in OnExp to improve agent performance in real-world scenarios and discuss their corresponding challenges. This survey aspires to be a foundational reference for researchers and practitioners, promoting further exploration and innovation in this crucial domain.

Keywords

Conversational agents, Conversational understanding, Ontology expansion, Large Language Models, LLMs

Discipline

Artificial Intelligence and Robotics | Computer Sciences

Research Areas

Data Science and Engineering; Intelligent Systems and Optimization

Areas of Excellence

Digital transformation

Publication

Proceedings of the 19th Conference on Empirical Methods in Natural Language Processing (EMNLP 2024) : Miami, Florida, USA, November 12-16

First Page

18111

Last Page

18127

Publisher

Association for Computational Linguistics

City or Country

Miami, Florida

Share

COinS