Publication Type

Conference Proceeding Article

Version

acceptedVersion

Publication Date

11-2024

Abstract

Despite the remarkable abilities of Large Language Models (LLMs) to answer questions, they often display a considerable level of overconfidence even when the question does not have a definitive answer. To avoid providing hallucinated answers to these unknown questions, existing studies typically investigate approaches to refusing to answer these questions. In this work, we propose a novel and scalable self-alignment method to utilize the LLM itself to enhance its response-ability to different types of unknown questions, being capable of not only refusing to answer but also providing explanation to the unanswerability of unknown questions. Specifically, the Self-Align method first employ a two-stage class-aware self-augmentation approach to generate a large amount of unknown question-response data. Then we conduct disparity-driven self-curation to select qualified data for fine-tuning the LLM itself for aligning the responses to unknown questions as desired. Experimental results on two datasets across four types of unknown questions validate the superiority of the Self-Align method over existing baselines in terms of three types of task formulation.

Keywords

Large Language Models, LLMs, Unknown question response, Self-Align method

Discipline

Artificial Intelligence and Robotics | Computer Sciences

Research Areas

Data Science and Engineering; Intelligent Systems and Optimization

Areas of Excellence

Digital transformation

Publication

Proceedings of the 19th Conference on Empirical Methods in Natural Language Processing (EMNLP 2024) : Miami, Florida, USA, November 12-16

First Page

13652

Last Page

13673

Publisher

Association for Computational Linguistics

City or Country

USA

Share

COinS