Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
10-2007
Abstract
Recently, there arise a large number of graphs with massive sizes and complex structures in many new applications, such as biological networks, social networks, and the Web, demanding powerful data mining methods. Due to inherent noise or data diversity, it is crucial to address the issue of approximation, if one wants to mine patterns that are potentially interesting with tolerable variations. In this paper, we investigate the problem of mining frequent approximate patterns from a massive network and propose a method called gApprox. gApprox not only finds approximate network patterns, which is the key for many knowledge discovery applications on structural data, but also enriches the library of graph mining methodologies by introducing several novel techniques such as: (1) a complete and redundancy-free strategy to explore the new pattern space faced by gApprox; and (2) transform "frequent in an approximate sense" into an anti-monotonic constraint so that it can be pushed deep into the mining process. Systematic empirical studies on both real and synthetic data sets show that frequent approximate patterns mined from the worm protein-protein interaction network are biologically interesting and gApprox is both effective and efficient.
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
IEEE International Conference on Data Mining: ICDM 2007: 28 - 31 October, Omaha, Nebraska: Proceedings
First Page
445
Last Page
450
ISBN
9780769530185
Identifier
10.1109/ICDM.2007.36
Publisher
IEEE Computer Society
City or Country
Los Alamitos, CA
Citation
CHEN, Chen; YAN, Xifeng; ZHU, Feida; and HAN, Jiawei.
gApprox: Mining Frequent Approximate Patterns from a Massive Network. (2007). IEEE International Conference on Data Mining: ICDM 2007: 28 - 31 October, Omaha, Nebraska: Proceedings. 445-450.
Available at: https://ink.library.smu.edu.sg/sis_research/928
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.ieeecomputersociety.org/10.1109/ICDM.2007.36
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons