Publication Type

Conference Proceeding Article

Version

publishedVersion

Publication Date

8-2024

Abstract

Multiple-choice questions (MCQs) are important in enhancing concept learning and student engagement for educational purposes. Despite the multimodal nature of educational content, current methods focus mainly on text-based inputs and often neglect the integration of visual information. In this work, we study the problem of multimodal educational question generation, which aims at generating subject-specific educational questions with plausible yet incorrect distractors based on multimodal educational content. To tackle this problem, we introduce a novel framework, named Chain-of-Exemplar (CoE), which utilizes multimodal large language models (MLLMs) with Chain-of-Thought reasoning to improve the generation of challenging distractors. Furthermore, CoE leverages three-stage contextualized exemplar retrieval to retrieve exemplary questions as guides for generating more subject-specific educational questions. Experimental results on the ScienceQA benchmark demonstrate the superiority of CoE in both question generation and distractor generation over existing methods across various subjects and educational levels.

Discipline

Databases and Information Systems | Programming Languages and Compilers

Research Areas

Data Science and Engineering

Publication

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 2024 August 11-16

Volume

1

First Page

7978

Last Page

7993

Publisher

ACL

City or Country

USA

Additional URL

https://aclanthology.org/2024.acl-long.432

Share

COinS