Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
2-2019
Abstract
Answer selection and knowledge base question answering (KBQA) are two important tasks of question answering (QA) systems. Existing methods solve these two tasks separately, which requires large number of repetitive work and neglects the rich correlation information between tasks. In this paper, we tackle answer selection and KBQA tasks simultaneously via multi-task learning (MTL), motivated by the following motivations. First, both answer selection and KBQA can be regarded as a ranking problem, with one at text-level while the other at knowledge-level. Second, these two tasks can benefit each other: answer selection can incorporate the external knowledge from knowledge base (KB), while KBQA can be improved by learning contextual information from answer selection. To fulfill the goal of jointly learning these two tasks, we propose a novel multi-task learning scheme that utilizes multi-view attention learned from various perspectives to enable these tasks to interact with each other as well as learn more comprehensive sentence representations. The experiments conducted on several real-world datasets demonstrate the effectiveness of the proposed method, and the performance of answer selection and KBQA is improved. Also, the multi-view attention scheme is proved to be effective in assembling attentive information from different representational perspectives.
Discipline
Databases and Information Systems
Research Areas
Data Science and Engineering
Areas of Excellence
Digital transformation
Publication
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, 2019 January 27 - February 1
Volume
33
First Page
6318
Last Page
6325
Identifier
10.1609/AAAI.V33I01.33016318
Publisher
AAAI Press
City or Country
USA
Citation
DENG, Yang; XIE, Yuexiang; LI, Yaliang; YANG, Min; DU, Nan; FAN, Wei; LEI, Kai; and SHEN, Ying.
Multi-task learning with multi-view attention for answer selection and knowledge base question answering. (2019). Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, 2019 January 27 - February 1. 33, 6318-6325.
Available at: https://ink.library.smu.edu.sg/sis_research/9108
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1609/AAAI.V33I01.33016318