Publication Type

Conference Proceeding Article

Version

publishedVersion

Publication Date

7-2023

Abstract

Markov decision processes can be viewed as transformers of probability distributions. While this view is useful from a practical standpoint to reason about trajectories of distributions, basic reachability and safety problems are known to be computationally intractable (i.e., Skolem-hard) to solve in such models. Further, we show that even for simple examples of MDPs, strategies for safety objectives over distributions can require infinite memory and randomization.In light of this, we present a novel overapproximation approach to synthesize strategies in an MDP, such that a safety objective over the distributions is met. More precisely, we develop a new framework for template-based synthesis of certificates as affine distributional and inductive invariants for safety objectives in MDPs. We provide two algorithms within this framework. One can only synthesize memoryless strategies, but has relative completeness guarantees, while the other can synthesize general strategies. The runtime complexity of both algorithms is in PSPACE. We implement these algorithms and show that they can solve several non-trivial examples.

Keywords

Markov decision processes, invariant synthesis, distribution transformers, Skolem hardness

Discipline

Databases and Information Systems

Research Areas

Intelligent Systems and Optimization

Areas of Excellence

Digital transformation

Publication

Proceedings of the 35th International Conference, CAV 2023, Paris, France, July 17-22

First Page

86

Last Page

112

ISBN

9783031377082

Identifier

10.1007/978-3-031-37709-9_5

Publisher

Springer

City or Country

Cham

Copyright Owner and License

Authors

Additional URL

https://doi.org/10.1007/978-3-031-37709-9_5

Share

COinS