Publication Type
Journal Article
Version
submittedVersion
Publication Date
6-2024
Abstract
With the rapid development of Quantum Machine Learning, quantum neural networks (QNN) have experienced great advancement in the past few years, harnessing the advantages of quantum computing to significantly speed up classical machine learning tasks. Despite their increasing popularity, the quantum neural network is quite counter-intuitive and difficult to understand, due to their unique quantum-specific layers (e.g., data encoding and measurement) in their architecture. It prevents QNN users and researchers from effectively understanding its inner workings and exploring the model training status. To fill the research gap, we propose VIOLET , a novel visual analytics approach to improve the explainability of quantum neural networks. Guided by the design requirements distilled from the interviews with domain experts and the literature survey, we developed three visualization views: the Encoder View unveils the process of converting classical input data into quantum states, the Ansatz View reveals the temporal evolution of quantum states in the training process, and the Feature View displays the features a QNN has learned after the training process. Two novel visual designs, i.e., satellite chart and augmented heatmap, are proposed to visually explain the variational parameters and quantum circuit measurements respectively. We evaluate VIOLET through two case studies and in-depth interviews with 12 domain experts. The results demonstrate the effectiveness and usability of VIOLET in helping QNN users and developers intuitively understand and explore quantum neural networks.
Keywords
Data visualization, explainable artificial intelligence (XAI), quantum machine learning, quantum neural networks
Discipline
Artificial Intelligence and Robotics | Graphics and Human Computer Interfaces
Research Areas
Software and Cyber-Physical Systems
Areas of Excellence
Digital transformation
Publication
IEEE Transactions on Visualization and Computer Graphics
Volume
30
Issue
6
First Page
1
Last Page
11
ISSN
1077-2626
Identifier
10.1109/TVCG.2024.3388557
Publisher
Institute of Electrical and Electronics Engineers
Citation
RUAN, Shaolun; LIANG, Zhiding; GUAN, Qiang; GRIFFIN, Paul Robert; WEN, Xiaolin; LIN, Yanna; and WANG, Yong.
VIOLET: Visual Analytics for Explainable Quantum Neural Networks. (2024). IEEE Transactions on Visualization and Computer Graphics. 30, (6), 1-11.
Available at: https://ink.library.smu.edu.sg/sis_research/8970
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Additional URL
https://doi.org/10.1109/TVCG.2024.3388557
Included in
Artificial Intelligence and Robotics Commons, Graphics and Human Computer Interfaces Commons