Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
5-2016
Abstract
Software developers need access to different kinds of information which is often dispersed among different documentation sources, such as API documentation or Stack Overflow. We present an approach to automatically augment API documentation with “insight sentences” from Stack Overflow— sentences that are related to a particular API type and that provide insight not contained in the API documentation of that type. Based on a development set of 1,574 sentences, we compare the performance of two state-of-the-art summarization techniques as well as a pattern-based approach for insight sentence extraction. We then present SISE, a novel machine learning based approach that uses as features the sentences themselves, their formatting, their question, their answer, and their authors as well as part-of-speech tags and the similarity of a sentence to the corresponding API documentation. With SISE, we were able to achieve a precision of 0.64 and a coverage of 0.7 on the development set. In a comparative study with eight software developers, we found that SISE resulted in the highest number of sentences that were considered to add useful information not found in the API documentation. These results indicate that taking into account the meta data available on Stack Overflow as well as part-of-speech tags can significantly improve unsupervised extraction approaches when applied to Stack Overflow data.
Keywords
API documentation, Insight sentences, Stack Overow
Discipline
Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
Proceedings of the 38th IEEE International Conference on Software Engineering (ICSE), Austin, TX, USA, 2016 May 14-22
First Page
392
Last Page
403
ISBN
9781450342056
Identifier
10.1145/2884781.2884800
Publisher
IEEE Computer Society
City or Country
Piscataway, NJ
Citation
TREUDE, Christoph and ROBILLARD, Martin P..
Augmenting API documentation with insights from stack overflow. (2016). Proceedings of the 38th IEEE International Conference on Software Engineering (ICSE), Austin, TX, USA, 2016 May 14-22. 392-403.
Available at: https://ink.library.smu.edu.sg/sis_research/8938
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1145/2884781.2884800