Publication Type
Journal Article
Version
acceptedVersion
Publication Date
1-2024
Abstract
Graph Neural Networks (GNNs) have become the de facto standard for representation learning on topological graphs, which usually derive effective node representations via message passing from neighborhoods. Although GNNs have achieved great success, previous models are mostly confined to static and homogeneous graphs. However, there are multiple dynamic interactions between different-typed nodes in real-world scenarios like academic networks and e-commerce platforms, forming temporal heterogeneous graphs (THGs). Limited work has been done for representation learning on THGs and the challenges are in two aspects. First, there are abundant dynamic semantics between nodes while traditional techniques like meta-paths can only capture static relevance. Second, different semantics on THGs have often mutually evolved with each other over time, making it more difficult than dynamic homogeneous graph modeling. To address this problem, here we propose the Dynamic Meta-path guided temporal heterogeneous Graph Neural Networks (DyMGNNs). To handle the dynamic semantics, we introduce the concept of dynamic meta-path which is a common base for temporal semantic search engines, and then adopt the temporal importance sampling to extract neighborhoods with temporal bias. Focusing on mutual evolution, we design the heterogeneous mutual evolution attention mechanism, which can model the fine-grained interplay of semanticlevel preferences for each node. Extensive experiments on three real-world datasets for node classification and temporal link prediction demonstrate that our method consistently outperforms state-of-the-art alternatives.
Keywords
Temporal heterogeneous graph, graph neural network, dynamic meta-path, temporal importance sampling, heterogeneous mutual evolution attention
Discipline
Graphics and Human Computer Interfaces | OS and Networks
Research Areas
Data Science and Engineering
Publication
World Scientific Annual Review of Artificial Intelligence
Volume
1
First Page
1
Last Page
22
ISSN
2811-0323
Identifier
10.1142/S2811032323500029
Publisher
World Scientific Publishing Co. Pte. Ltd.
Citation
JI, Yugang; SHI, Chuan; and FANG, Yuan.
Dynamic meta-path guided temporal heterogeneous graph neural networks. (2024). World Scientific Annual Review of Artificial Intelligence. 1, 1-22.
Available at: https://ink.library.smu.edu.sg/sis_research/8926
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1142/S2811032323500029