Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
5-2019
Abstract
Software repositories contain large amounts of textual data, ranging from source code comments and issue descriptions to questions, answers, and comments on Stack Overflow. To make sense of this textual data, topic modelling is frequently used as a text-mining tool for the discovery of hidden semantic structures in text bodies. Latent Dirichlet allocation (LDA) is a commonly used topic model that aims to explain the structure of a corpus by grouping texts. LDA requires multiple parameters to work well, and there are only rough and sometimes conflicting guidelines available on how these parameters should be set. In this paper, we contribute (i) a broad study of parameters to arrive at good local optima for GitHub and Stack Overflow text corpora, (ii) an a-posteriori characterisation of text corpora related to eight programming languages, and (iii) an analysis of corpus feature importance via per-corpus LDA configuration. We find that (1) popular rules of thumb for topic modelling parameter configuration are not applicable to the corpora used in our experiments, (2) corpora sampled from GitHub and Stack Overflow have different characteristics and require different configurations to achieve good model fit, and (3) we can predict good configurations for unseen corpora reliably. These findings support researchers and practitioners in efficiently determining suitable configurations for topic modelling when analysing textual data contained in software repositories.
Keywords
Algorithm portfolio, Corpus features, Topic modelling
Discipline
Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
Proceedings of the 16th International Conference on Mining Software Repositories, Montreal, Canada, 2019 May 26-27
First Page
84
Last Page
95
ISBN
9781728134123
Identifier
10.1109/MSR.2019.00022
Publisher
IEEE Computer Society
City or Country
Piscataway, NJ
Citation
TREUDE, Christoph and WAGNER, Markus.
Predicting good configurations for github and stack overflow topic models. (2019). Proceedings of the 16th International Conference on Mining Software Repositories, Montreal, Canada, 2019 May 26-27. 84-95.
Available at: https://ink.library.smu.edu.sg/sis_research/8836
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/MSR.2019.00022