Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
8-2005
Abstract
Assume that a franchise plans to open k branches in a city, so that the average distance from each residential block to the closest branch is minimized. This is an instance of the k-medoids problem, where residential blocks constitute the input dataset and the k branch locations correspond to the medoids. Since the problem is NP-hard, research has focused on approximate solutions. Despite an avalanche of methods for small and moderate size datasets, currently there exists no technique applicable to very large databases. In this paper, we provide efficient algorithms that utilize an existing data-partition index to achieve low CPU and I/O cost. In particular, we exploit the intrinsic grouping properties of the index in order to avoid reading the entire dataset. Furthermore, we apply our framework to solve medoid-aggregate queries, where k is not known in advance; instead, we are asked to compute a medoid set that leads to an average distance close to a user-specified parameter T. Compared to previous approaches, we achieve results of comparable or better quality at a small fraction of the CPU and I/O costs (seconds as opposed to hours, and tens of node accesses instead of thousands).
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, August 22-24, 2005: Proceedings
Volume
3633
First Page
55
Last Page
72
ISBN
9783540319047
Identifier
10.1007/11535331_4
Publisher
Springer Verlag
City or Country
Angra dos Reis, Brazil
Citation
MOURATIDIS, Kyriakos; Papadias, Dimitris; and Papadimitriou, Spiros.
Medoid Queries in Large Spatial Databases. (2005). Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, August 22-24, 2005: Proceedings. 3633, 55-72.
Available at: https://ink.library.smu.edu.sg/sis_research/874
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1007/11535331_4
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons