Publication Type

Conference Proceeding Article

Version

acceptedVersion

Publication Date

12-2021

Abstract

Due to the high communication cost in distributed and federated learning, methods relying on compressed communication are becoming increasingly popular. Besides, the best theoretically and practically performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of communications (faster convergence), e.g., Nesterov's accelerated gradient descent (Nesterov, 1983, 2004) and Adam (Kingma and Ba, 2014). In order to combine the benefits of communication compression and convergence acceleration, we propose a \emph{compressed and accelerated} gradient method based on ANITA (Li, 2021) for distributed optimization, which we call CANITA. Our CANITA achieves the \emph{first accelerated rate} $O\bigg(\sqrt{\Big(1+\sqrt{\frac{\omega^3}{n}}\Big)\frac{L}{\epsilon}} + \omega\big(\frac{1}{\epsilon}\big)^{\frac{1}{3}}\bigg)$, which improves upon the state-of-the-art non-accelerated rate $O\left((1+\frac{\omega}{n})\frac{L}{\epsilon} + \frac{\omega^2+\omega}{\omega+n}\frac{1}{\epsilon}\right)$ of DIANA (Khaled et al., 2020) for distributed general convex problems, where $\epsilon$ is the target error, $L$ is the smooth parameter of the objective, $n$ is the number of machines/devices, and $\omega$ is the compression parameter (larger $\omega$ means more compression can be applied, and no compression implies $\omega=0$). Our results show that as long as the number of devices $n$ is large (often true in distributed/federated learning), or the compression $\omega$ is not very high, CANITA achieves the faster convergence rate $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$, i.e., the number of communication rounds is $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$ (vs. $O\big(\frac{L}{\epsilon}\big)$ achieved by previous works). As a result, CANITA enjoys the advantages of both compression (compressed communication in each round) and acceleration (much fewer communication rounds).

Discipline

Databases and Information Systems

Research Areas

Data Science and Engineering; Intelligent Systems and Optimization

Publication

Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14

First Page

1

Last Page

21

Identifier

https://proceedings.neurips.cc/paper_files/paper/2021/hash/7274a60c83145b1082be9caa91926ecf-Abstract.html

Publisher

Neural Information Processing Systems Foundation

City or Country

Virtual Conference

Additional URL

https://proceedings.neurips.cc/paper_files/paper/2021/hash/7274a60c83145b1082be9caa91926ecf-Abstract.html

Share

COinS