Publication Type

Conference Proceeding Article

Version

acceptedVersion

Publication Date

12-2019

Abstract

We analyze stochastic gradient algorithms for optimizing nonconvex problems. In particular, our goal is to find local minima (second-order stationary points) instead of just finding first-order stationary points which may be some bad unstable saddle points. We show that a simple perturbed version of stochastic recursive gradient descent algorithm (called SSRGD) can find an $(\epsilon,\delta)$-second-order stationary point with $\widetilde{O}(\sqrt{n}/\epsilon^2 + \sqrt{n}/\delta^4 + n/\delta^3)$ stochastic gradient complexity for nonconvex finite-sum problems. As a by-product, SSRGD finds an $\epsilon$-first-order stationary point with $O(n+\sqrt{n}/\epsilon^2)$ stochastic gradients. These results are almost optimal since Fang et al. [2018] provided a lower bound $\Omega(\sqrt{n}/\epsilon^2)$ for finding even just an $\epsilon$-first-order stationary point. We emphasize that SSRGD algorithm for finding second-order stationary points is as simple as for finding first-order stationary points just by adding a uniform perturbation sometimes, while all other algorithms for finding second-order stationary points with similar gradient complexity need to combine with a negative-curvature search subroutine (e.g., Neon2 [Allen-Zhu and Li, 2018]). Moreover, the simple SSRGD algorithm gets a simpler analysis. Besides, we also extend our results from nonconvex finite-sum problems to nonconvex online (expectation) problems, and prove the corresponding convergence results.

Discipline

Databases and Information Systems

Research Areas

Data Science and Engineering; Intelligent Systems and Optimization

Publication

Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, December 8-14

First Page

1

Last Page

11

ISBN

9781713807933

Publisher

Neural Information Processing Systems Foundation

City or Country

Vancouver, Canada

Additional URL

https://arxiv.org/abs/1904.09265

Share

COinS