Publication Type

Journal Article

Version

publishedVersion

Publication Date

12-2023

Abstract

Digital microfluidic, as an emerging and potential technology, diversifies the biochemical applications platform, such as protein dilution sewage detection. At present, a vast majority of universal cyberphysical digital microfluidic biochips (DMFBs) transmit data through wires via personal computers and microcontrollers (like Arduino), consequently, susceptible to various security threats and with the popularity of wireless devices, losing competitiveness gradually. On the premise that security be ensured first and foremost, calls for wireless portable, safe, and economical DMFBs are imperative to expand their application fields, engage more users, and cater to the trend of future wireless communication. To this end, a new cyber-physical DMFB called PortableLab is proposed in this paper, which guarantees data security through wireless sensors at low cost. After considering the security, computing consumption, and cost, a mobile module is added. In addition, the improved Advanced Encryption Standard (AES) and Cyclic Redundancy Check (CRC) algorithms are utilized to ensure the integrity and confidentiality of data transmission. Ultimately, all the security analysis, cost analysis, and experimental results on multiple protocols demonstrate the feasibility of the proposed PortableLab DMFB in time and space.

Keywords

DMFB, security, wireless, mobile, low-cost, healthcare

Discipline

Artificial Intelligence and Robotics | Health Information Technology | Software Engineering

Publication

IEEE Access

Volume

11

First Page

137990

Last Page

137998

ISSN

2169-3536

Identifier

10.1109/ACCESS.2023.3339386

Publisher

Institute of Electrical and Electronics Engineers

Copyright Owner and License

Authors-CC-BY

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Additional URL

https://doi.org/10.1109/ACCESS.2023.3339386

Share

COinS