Publication Type

Journal Article

Version

publishedVersion

Publication Date

3-2024

Abstract

Cryptocurrency has been subject to illicit activities probably more often than traditional financial assets due to the pseudo-anonymous nature of its transacting entities. An ideal detection model is expected to achieve all three critical properties of early detection, good interpretability, and versatility for various illicit activities. However, existing solutions cannot meet all these requirements, as most of them heavily rely on deep learning without interpretability and are only available for retrospective analysis of a specific illicit type. To tackle all these challenges, we propose Intention Monitor for early malice detection in Bitcoin, where the on-chain record data for a certain address are much scarcer than other cryptocurrency platforms.We first define asset transfer paths with the Decision Tree based feature Selection and Complement to build different feature sets for different malice types. Then, the Status/Action Proposal module and the Intention-VAE module generate the status, action, intent-snippet, and hidden intent-snippet embedding. With all these modules, our model is highly interpretable and can detect various illegal activities. Moreover, well-designed loss functions further enhance the prediction speed and the model’s interpretability. Extensive experiments on three real-world datasets demonstrate that our proposed algorithm outperforms the state-of-the-art methods. Furthermore, additional case studies justify that our model not only explains existing illicit patterns but also can find new suspicious characters.

Keywords

Cybercrime, Malicious address, Early detection, Intention discovery, Cryptocurrency, Bitcoin

Discipline

Databases and Information Systems | Information Security

Research Areas

Data Science and Engineering

Publication

ACM Transactions on Knowledge Discovery from Data

Volume

18

Issue

3

First Page

1

Last Page

27

ISSN

1556-4681

Identifier

10.1145/3626102

Publisher

Association for Computing Machinery (ACM)

Copyright Owner and License

Authors

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Additional URL

https://doi.org/10.1145/3626102

Share

COinS