Publication Type

Conference Proceeding Article

Version

acceptedVersion

Publication Date

12-2023

Abstract

In this paper, we present Neural k-Opt (NeuOpt), a novel learning-to-search (L2S) solver for routing problems. It learns to perform flexible k-opt exchanges based on a tailored action factorization method and a customized recurrent dual-stream decoder. As a pioneering work to circumvent the pure feasibility masking scheme and enable the autonomous exploration of both feasible and infeasible regions, we then propose the Guided Infeasible Region Exploration (GIRE) scheme, which supplements the NeuOpt policy network with feasibility-related features and leverages reward shaping to steer reinforcement learning more effectively. Besides, we further equip NeuOpt with dynamic data augmentations during inference for more diverse searches. Extensive experiments on the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that our NeuOpt not only significantly outstrips existing (masking-based) L2S solvers, but also showcases superiority over the learning-to-construct (L2C) and learning-to-predict (L2P) solvers. Notably, we offer fresh perspectives on how neural solvers could efficiently handle VRP constraints, against masking-based feasibility representation.

Discipline

Databases and Information Systems

Research Areas

Data Science and Engineering

Publication

Proceedings of the 37th Conference on Neural Information Processing, New Orleans, United States, December 12-14

First Page

1

Last Page

24

Publisher

Neural information processing systems foundation

City or Country

California

Copyright Owner and License

Authors

Share

COinS