Publication Type

Journal Article

Version

publishedVersion

Publication Date

2-2023

Abstract

PersonImageSynthesisaimsattransferringtheappearanceofthesourcepersonimageintoatargetpose. Existingmethods cannot handle largeposevariations and therefore suffer fromtwocritical problems: (1)synthesisdistortionduetotheentanglementofposeandappearanceinformationamongdifferentbody componentsand(2)failureinpreservingoriginalsemantics(e.g.,thesameoutfit).Inthisarticle,weexplicitly addressthesetwoproblemsbyproposingaPose-andAttribute-consistentPersonImageSynthesisNetwork (PAC-GAN).Toreduceposeandappearancematchingambiguity,weproposeacomponent-wisetransferring modelconsistingoftwostages.Theformerstagefocusesonlyonsynthesizingtargetposes,whilethelatter renderstargetappearancesbyexplicitlytransferringtheappearanceinformationfromthesourceimageto thetargetimageinacomponent-wisemanner. Inthisway,source-targetmatchingambiguityiseliminated duetothecomponent-wisedisentanglementofposeandappearancesynthesis.Second,tomaintainattribute consistency,werepresenttheinputimageasanattributevectorandimposeahigh-levelsemanticconstraint usingthisvectortoregularizethetargetsynthesis.ExtensiveexperimentalresultsontheDeepFashiondataset demonstratethesuperiorityofourmethodoverthestateoftheart,especiallyformaintainingposeandattributeconsistenciesunderlargeposevariations.

Keywords

Computing methodologies, Artificial intelligence, Computer vision, Computer graphics, Image manipulation, Image processing

Discipline

Artificial Intelligence and Robotics

Research Areas

Information Systems and Management

Publication

ACM Transactions on Multimedia Computing, Communications and Applications

Volume

19

Issue

2

First Page

1

Last Page

21

ISSN

1551-6857

Identifier

10.1145/3554739

Publisher

Association for Computing Machinery (ACM)

Additional URL

https://doi.org/10.1145/3554739

Share

COinS