Context-Aware Neural Fault Localization

Zhuo ZHANG
Xiaoguang MAO
Meng YAN
Xin XIA
David LO
David LO, Singapore Management University

Abstract

Numerous fault localization techniques identify suspicious statements potentially responsible for program failures by discovering the statistical correlation between test results (i.e., failing or passing) and the executions of the different statements of a program (i.e., covered or not covered). They rarely incorporate a failure context into their suspiciousness evaluation despite the fact that a failure context showing how a failure is produced is useful for analyzing and locating faults. Since a failure context usually contains the transitive relationships among the statements of causing a failure, its relationship complexity becomes one major obstacle for the context incorporation in suspiciousness evaluation of fault localization. To overcome the obstacle, our insight is that leveraging the promising learning ability may be a candidate solution to learn a feasible model for incorporating a failure context into fault localization. Thus, we propose a context-aware neural fault localization approach (CAN). Specifically, CAN represents the failure context by constructing a program dependency graph, which shows how a set of statements interact with each other (i.e., data and control dependencies) to cause a failure. Then, CAN utilizes graph neural networks to analyze and incorporate the context (e.g., the dependencies among the statements) into suspiciousness evaluation. Our empirical results on the 12 large-sized programs show that CAN achieves promising results (e.g., 29.23% faults are ranked within top 5), and it significantly improves the state-of-the-art baselines with a substantial margin.