Publication Type

Journal Article

Version

publishedVersion

Publication Date

12-2017

Abstract

Arriving on time and total travel time are two important properties for vehicle routing. Existing route guidance approaches always consider them independently, because they may conflict with each other. In this article, we develop a semi-decentralized multiagent-based vehicle routing approach where vehicle agents follow the local route guidance by infrastructure agents at each intersection, and infrastructure agents perform the route guidance by solving a route assignment problem. It integrates the two properties by expressing them as two objective terms of the route assignment problem. Regarding arriving on time, it is formulated based on the probability tail model, which aims to maximize the probability of reaching destination before deadline. Regarding total travel time, it is formulated as a weighted quadratic term, which aims to minimize the expected travel time from the current location to the destination based on the potential route assignment. The weight for total travel time is designed to be comparatively large if the deadline is loose. Additionally, we improve the proposed approach in two aspects, including travel time prediction and computational efficiency. Experimental results on real road networks justify its ability to increase the average probability of arriving on time, reduce total travel time, and enhance the overall routing performance.

Keywords

Intelligent transportation systems, multiagent-based route guidance, arriving on time, probability tail model, total travel time

Discipline

Operations Research, Systems Engineering and Industrial Engineering | Transportation

Research Areas

Intelligent Systems and Optimization

Publication

ACM Transactions on Intelligent Systems and Technology

Volume

9

Issue

3

First Page

1

Last Page

21

ISSN

2157-6904

Identifier

10.1145/3078847

Publisher

Association for Computing Machinery (ACM)

Copyright Owner and License

Publisher

Additional URL

https://doi.org/10.1145/3078847

Share

COinS