Publication Type

Journal Article

Version

acceptedVersion

Publication Date

7-2018

Abstract

Mining social media messages such as tweets, blogs, and Facebook posts for health and drug related information has received significant interest in pharmacovigilance research. Social media sites (e.g., Twitter), have been used for monitoring drug abuse, adverse reactions to drug usage, and analyzing expression of sentiments related to drugs. Most of these studies are based on aggregated results from a large population rather than specific sets of individuals. In order to conduct studies at an individual level or specific groups of people, identifying posts mentioning intake of medicine by the user is necessary. Toward this objective we develop a classifier for identifying mentions of personal intake of medicine in tweets. We train a stacked ensemble of shallow convolutional neural network (CNN) models on an annotated dataset. We use random search for tuning the hyper-parameters of the CNN models and present an ensemble of best models for the prediction task. Our system produces state-of-the-art results, with a micro-averaged F-score of 0.693. We believe that the developed classifier has direct uses in the areas of psychology, health informatics, pharmacovigilance, and affective computing for tracking moods, emotions, and sentiments of patients expressing intake of medicine in social media.

Keywords

adverse drug reactions, affective computing, health informatics, personal intake of medicine, pharmacovigilance, social media mining

Discipline

Databases and Information Systems | Health Information Technology | Numerical Analysis and Scientific Computing | Social Media

Research Areas

Data Science and Engineering

Publication

IEEE Intelligent Systems

Volume

33

Issue

4

First Page

87

Last Page

95

ISSN

1541-1672

Identifier

10.1109/MIS.2018.043741326

Publisher

IEEE

Embargo Period

2-22-2023

Copyright Owner and License

Authors

Additional URL

https://doi.org/10.1109/MIS.2018.043741326

Share

COinS