Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
8-2022
Abstract
Increasing maritime trade often results in congestion in busy ports, thereby necessitating planning methods to avoid close quarter risky situations among vessels. Rapid digitization and automation of port operations and vessel navigation provide unique opportunities for significantly improving navigation safety. Our key contributions are as follows. First, given a set of future candidate trajectories for vessels in a traffic hotspot zone, we develop a multiagent trajectory optimization method to choose trajectories that result in the best overall close quarter risk reduction. Our novel MILP-based optimization method is more than an order-of-magnitude faster than a standard MILP for this problem, and runs in near real-time. Second, although automation has improved in maritime operations, current vessel traffic systems (in our case study of a busy Asian port) predict only a single future trajectory of a vessel based on linear extrapolation. Therefore, using historical data we learn a generative model that predicts multiple possible future trajectories of each vessel in a given traffic hotspot, reflecting past vessel movement patterns, and integrate it with our trajectory optimizer. Third, we validate our trajectory optimization and generative model extensively using a real world maritime traffic dataset containing 6 million Automated Identification System (AIS) data records detailing vessel movements over 1.5 years from one of the world’s busiest ports, demonstrating effective risk reduction.
Keywords
Maritime traffic control, Multi-agent path coordination
Discipline
Artificial Intelligence and Robotics | Databases and Information Systems
Research Areas
Data Science and Engineering; Intelligent Systems and Optimization
Publication
Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming, Haifa, Israel, 2022 July 31 - August 5
ISBN
9783959772402
Identifier
10.4230/LIPIcs.CP.2022.5
City or Country
Haifa, Israel
Citation
BASRUR, Chaithanya; SINGH, Arambam James; SINHA, Arunesh; KUMAR, Akshat; and KUMAR, T. K. Satish.
Trajectory optimization for safe navigation in maritime traffic using historical data. (2022). Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming, Haifa, Israel, 2022 July 31 - August 5.
Available at: https://ink.library.smu.edu.sg/sis_research/7718
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.