Publication Type

Conference Proceeding Article

Version

publishedVersion

Publication Date

5-2022

Abstract

Good comments are invaluable assets to software projects, as they help developers understand and maintain projects. However, due to some poor commenting practices, comments are often missing or inconsistent with the source code. Software engineering practitioners often spend a significant amount of time and effort reading and understanding programs without or with poor comments. To counter this, researchers have proposed various techniques to automatically generate code comments in recent years, which can not only save developers time writing comments but also help them better understand existing software projects. However, it is unclear whether these techniques can alleviate comment issues and whether practitioners appreciate this line of research. To fill this gap, we performed an empirical study by interviewing and surveying practitioners about their expectations of research in code comment generation. We then compared what practitioners need and the current state-of-the-art research by performing a literature review of papers on code comment generation techniques published in the premier publication venues from 2010 to 2020. From this comparison, we highlighted the directions where researchers need to put effort to develop comment generation techniques that matter to practitioners.

Keywords

Code comment generation, Empirical study, Practitioners’ expectations

Discipline

Databases and Information Systems

Research Areas

Data Science and Engineering; Information Systems and Management

Publication

Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 2022 May 21-29

First Page

1693

Last Page

1705

Identifier

10.1145/3510003.3510152

Publisher

Association for Computing Machinery

City or Country

New York

Additional URL

https://doi.org/10.1145/3510003.3510152

Share

COinS