Publication Type
Journal Article
Version
submittedVersion
Publication Date
9-2009
Abstract
Similarity search over long sequence dataset becomes increasingly popular in many emerging applications, such as text retrieval, genetic sequences exploring, etc. In this paper, a novel index structure, namely Sequence Embedding Multiset tree (SEM − tree), has been proposed to speed up the searching process over long sequences. The SEM-tree is a multi-level structure where each level represents the sequence data with different compression level of multiset, and the length of multiset increases towards the leaf level which contains original sequences. The multisets, obtained using sequence embedding algorithms, have the desirable property that they do not need to keep the character order in the sequence, i.e. shorter representation, but can reserve the majority of distance information of sequences. Each level of the tree serves to prune the search space more efficiently as the multisets utilize the predicability to finish the searching process beforehand and reduce the computational cost greatly. A set of comprehensive experiments are conducted to evaluate the performance of the SEM-tree, and the experimental results show that the proposed method is much more efficient than existing representative methods.
Keywords
Sequence similarity search, Sequence embedding, Index, Dimension reduction
Discipline
Computer Sciences | Databases and Information Systems
Publication
Knowledge and Information Systems
Volume
20
Issue
3
First Page
301
Last Page
322
ISSN
0219-1377
Identifier
10.1007/s10115-008-0180-0
Publisher
Springer Verlag
Citation
SONG, Guojie; CUI, Bin; ZHENG, Baihua; XIE, Kunqing; and YANG, Dongqing.
Accelerating Sequence Searching: Dimensionality Reduction Method. (2009). Knowledge and Information Systems. 20, (3), 301-322.
Available at: https://ink.library.smu.edu.sg/sis_research/750
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1007/s10115-008-0180-0