Publication Type

Journal Article

Version

publishedVersion

Publication Date

4-2020

Abstract

Subversion of cryptography has received wide attentions especially after the Snowden Revelations in 2013. Most of the currently proposed subversion attacks essentially rely on the freedom of randomness choosing in the cryptographic protocol to hide backdoors embedded in the cryptosystems. Despite the fact that significant progresses in this line of research have been made, most of them mainly considered the classical setting, while the research gap regarding subversion attacks against post-quantum cryptography remains tremendous. Inspired by this observation, we investigate a subversion attack against existing protocol that is proved post-quantum secure. Particularly, we show an efficient way to undetectably subvert the well-known lattice-based encryption scheme proposed by Regev (STOC 2005). Our subversion enables the subverted algorithm to stealthily leak arbitrary messages to the outsider who knows the backdoor. Through theoretical analysis and experimental observations, we demonstrate that the subversion attack against the LWE encryption scheme is feasible and practical.

Keywords

Public Key, Subversion Attack, Post-Quantum, Lattice

Discipline

Information Security

Research Areas

Information Systems and Management

Publication

Computer Journal

Volume

63

Issue

4

First Page

495

Last Page

507

ISSN

0010-4620

Identifier

10.1093/comjnl/bxz084

Publisher

Oxford University Press (OUP): Policy B - Oxford Open Option B

Additional URL

http://doi.org/10.1093/comjnl/bxz084

Share

COinS