Verifiable data mining against malicious adversaries in industrial internet of things
Publication Type
Journal Article
Publication Date
2-2022
Abstract
With the large-scaled data generated from various interconnected machines and networks, Industrial Internet of Things (IIoT) provides unprecedented opportunities for facilitating data mining for industrial applications. The current IIoT architecture tends to adopt cloud computing for further timely mining IIoT data, however, the openness of security-critical IIoT becomes challenging in terms of unbearable privacy issues. Most existing privacy-preserving data mining (PPDM) techniques are designed to resist honest-but-curious adversaries (i.e., cloud servers and data users). Due to the complexity and openness in IIoT, PPDM is significantly difficult with the presence of malicious adversaries in IIoT who may incur incorrect learned models and inference results. To solve the aforementioned issues, we propose a framework to extend existing PPDM to guard linear regression against malicious behaviors (hereafter referred to as GuardLR). To prevent dishonest computations of cloud servers and inconsistent inputs of data users, we first design a privacy-preserving verifiable learning scheme for linear regression, which guarantees the correctness of learning. In this article, to avoid malicious clouds from returning incorrect inference results, we design a privacy-preserving prediction scheme with lightweight verification. Our formal security analysis shows that GuardLR achieves privacy, completeness, and soundness. Empirical experiments using real-world datasets also demonstrate that GuardLR has high computational efficiency and accuracy.
Keywords
Industrial Internet of Things, Servers, Cloud computing, Cryptography, Training, Computational modeling, Informatics, Industrial Internet of Things (IIoT), linear regression (LR), malicious adversaries, privacy-preserving, verifiable
Discipline
Information Security
Research Areas
Data Science and Engineering; Cybersecurity
Publication
IEEE Transactions on Industrial Informatics
Volume
18
Issue
2
First Page
953
Last Page
964
ISSN
1551-3203
Identifier
10.1109/TII.2021.3077005
Publisher
Institute of Electrical and Electronics Engineers
Citation
MA, Zhuoran; MA, Jianfeng; MIAO, Yinbin; LIU, Ximeng; CHOO, Kim-Kwang Raymond; GAO, Yu; and DENG, Robert H..
Verifiable data mining against malicious adversaries in industrial internet of things. (2022). IEEE Transactions on Industrial Informatics. 18, (2), 953-964.
Available at: https://ink.library.smu.edu.sg/sis_research/7243
Additional URL
https://doi.org/10.1109/TII.2021.3077005