Publication Type

Conference Proceeding Article

Version

publishedVersion

Publication Date

8-2020

Abstract

Adversarial attacks of deep neural networks have been intensively studied on image, audio, and natural language classification tasks. Nevertheless, as a typical while important real-world application, the adversarial attacks of online video tracking that traces an object’s moving trajectory instead of its category are rarely explored. In this paper, we identify a new task for the adversarial attack to visual tracking: online generating imperceptible perturbations that mislead trackers along with an incorrect (Untargeted Attack, UA) or specified trajectory (Targeted Attack, TA). To this end, we first propose a spatial-aware basic attack by adapting existing attack methods, i.e., FGSM, BIM, and C&W, and comprehensively analyze the attacking performance. We identify that online object tracking poses two new challenges: 1) it is difficult to generate imperceptible perturbations that can transfer across frames, and 2) real-time trackers require the attack to satisfy a certain level of efficiency. To address these challenges, we further propose the spatial-aware online incremental attack (a.k.a. SPARK) that performs spatial-temporal sparse incremental perturbations online and makes the adversarial attack less perceptible. In addition, as an optimization-based method, SPARK quickly converges to very small losses within several iterations by considering historical incremental perturbations, making it much more efficient than basic attacks. The in-depth evaluation of the state-of-the-art trackers (i.e., SiamRPN++ with AlexNet, MobileNetv2, and ResNet-50, and SiamDW) on OTB100, VOT2018, UAV123, and LaSOT demonstrates the effectiveness and transferability of SPARK in misleading the trackers under both UA and TA with minor perturbations.

Keywords

Online incremental attack, Visual object tracking, Adversarial attack

Discipline

OS and Networks | Software Engineering

Research Areas

Software and Cyber-Physical Systems

Publication

Proceedings of the 16th European Conference on Computer Vision, Virtual , 2020, August 23-28

First Page

202

Last Page

219

ISBN

978-3-030-58594-5

Identifier

10.1007/978-3-030-58595-2_13

Publisher

Springer-Verlag

City or Country

Virtual Conference

Share

COinS