Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
7-2021
Abstract
Chest X-ray plays a key role in screening and diagnosis of many lung diseases including the COVID-19. Many works construct deep neural networks (DNNs) for chest X-ray images to realize automated and efficient diagnosis of lung diseases. However, bias field caused by the improper medical image acquisition process widely exists in the chest X-ray images while the robustness of DNNs to the bias field is rarely explored, posing a threat to the X-ray-based automated diagnosis system. In this paper, we study this problem based on the adversarial attack and propose a brand new attack, i.e., adversarial bias field attack where the bias field instead of the additive noise works as the adversarial perturbations for fooling DNNs. This novel attack poses a key problem: how to locally tune the bias field to realize high attack success rate while maintaining its spatial smoothness to guarantee high realisticity. These two goals contradict each other and thus has made the attack significantly challenging. To overcome this challenge, we propose the adversarial-smooth bias field attack that can locally tune the bias field with joint smooth & adversarial constraints. As a result, the adversarial X-ray images can not only fool the DNNs effectively but also retain very high level of realisticity. We validate our method on real chest X-ray datasets with powerful DNNs, e.g., ResNet50, DenseNet121, and MobileNet, and show different properties to the state-of-the-art attacks in both image realisticity and attack transferability. Our method reveals the potential threat to the DNN-based X-ray automated diagnosis and can definitely benefit the development of biasfield-robust automated diagnosis system.
Keywords
Medical image analysis, bias field, X-ray recognition, adversarial attack
Discipline
OS and Networks | Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Virtual Conference, July 5-9
First Page
1
Last Page
6
ISBN
9781665438643
Identifier
10.1109/ICME51207.2021.9428437
Publisher
IEEE Computer Society
City or Country
Virtual Conference
Citation
TIAN, Bingyu; GUO, Qing; JUEFEI-XU, Felix; CHAN, Wen Le; CHENG, Yupeng; LI, Xiaohong; XIE, Xiaofei; and QIN, Shengchao.
Bias field poses a threat to DNN-based X-ray recognition. (2021). Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Virtual Conference, July 5-9. 1-6.
Available at: https://ink.library.smu.edu.sg/sis_research/7075
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.