Publication Type

Journal Article

Version

acceptedVersion

Publication Date

6-2019

Abstract

Monitoring the daily transportation modes of an individual provides useful information in many application domains, such as urban design, real-time journey recommendation, as well as providing location-based services. In existing systems, accelerometer and GPS are the dominantly used signal sources for transportation context monitoring which drain out the limited battery life of the wearable devices very quickly. To resolve the high energy consumption issue, in this paper, we present EnTrans, which enables transportation mode detection by using only the kinetic energy harvester as an energy-efficient signal source. The proposed idea is based on the intuition that the vibrations experienced by the passenger during traveling with different transportation modes are distinctive. Thus, voltage signal generated by the energy harvesting devices should contain sufficient features to distinguish different transportation modes. We evaluate our system using over 28 hours of data, which is collected by eight individuals using a practical energy harvesting prototype. The evaluation results demonstrate that EnTrans is able to achieve an overall accuracy over 92% in classifying five different modes while saving more than 34% of the system power compared to conventional accelerometer-based approaches.

Keywords

Transportation mode detection, energy harvesting, wearable devices, sparse representation

Discipline

Artificial Intelligence and Robotics | Transportation

Research Areas

Intelligent Systems and Optimization

Publication

IEEE Transactions on Intelligent Transportation Systems

Volume

21

Issue

7

First Page

2816

Last Page

2827

ISSN

1524-9050

Identifier

10.1109/tits.2019.2918642

Publisher

Institute of Electrical and Electronics Engineers

Share

COinS