Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
8-2021
Abstract
Sequential multiagent decision-making under partial observability and uncertainty poses several challenges. Although multiagent reinforcement learning (MARL) approaches have increased the scalability, addressing combinatorial domains is still challenging as random exploration by agents is unlikely to generate useful reward signals. We address cooperative multiagent pathfinding under uncertainty and partial observability where agents move from their respective sources to destinations while also satisfying constraints (e.g., visiting landmarks). Our main contributions include: (1) compiling domain knowledge such as underlying graph connectivity and domain constraints into propositional logic based decision diagrams, (2) developing modular techniques to integrate such knowledge with deep MARL algorithms, and (3) developing fast algorithms to query the compiled knowledge for accelerated episode simulation in RL. Empirically, our approach can tractably represent various types of domain constraints, and outperforms previous MARL approaches significantly both in terms of sample complexity and solution quality on a number of instances.
Discipline
Databases and Information Systems
Research Areas
Data Science and Engineering
Publication
Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), Virtual Online, August 2-13
First Page
542
Last Page
550
Publisher
AAAI Press
City or Country
California, USA
Citation
LING, Jiajing; CHANDAK, Kushagra; and KUMAR, Akshat.
Integrating knowledge compilation with reinforcement learning for routes. (2021). Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), Virtual Online, August 2-13. 542-550.
Available at: https://ink.library.smu.edu.sg/sis_research/6898
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.