Publication Type

Journal Article

Version

publishedVersion

Publication Date

10-2015

Abstract

Face recognition on large-scale video in the wild is becoming increasingly important due to the ubiquity of video data captured by surveillance cameras, handheld devices, Internet uploads, and other sources. By treating each video as one image set, set-based methods recently have made great success in the field of video-based face recognition. In the wild world, videos often contain extremely complex data variations and thus pose a big challenge of set modeling for set-based methods. In this paper, we propose a novel Hybrid Euclidean-and-Riemannian Metric Learning (HERML) method to fuse multiple statistics of image set. Specifically, we represent each image set simultaneously by mean, covariance matrix and Gaussian distribution, which generally complement each other in the aspect of set modeling. However, it is not trivial to fuse them since mean, covariance matrix and Gaussian model typically lie in multiple heterogeneous spaces equipped with Euclidean or Riemannian metric. Therefore, we first implicitly map the original statistics into high dimensional Hilbert spaces by exploiting Euclidean and Riemannian kernels. With a LogDet divergence based objective function, the hybrid kernels are then fused by our hybrid metric learning framework, which can efficiently perform the fusing procedure on large-scale videos. The proposed method is evaluated on four public and challenging large-scale video face datasets. Extensive experimental results demonstrate that our method has a clear superiority over the state-of-the-art set-based methods for large-scale video-based face recognition. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Face recognition, large-scale video, multiple heterogeneous statistics, hybrid Euclidean-and-Riemannian metric learning

Discipline

Databases and Information Systems | Graphics and Human Computer Interfaces

Research Areas

Data Science and Engineering

Publication

Pattern Recognition

Volume

48

Issue

10

First Page

3113

Last Page

3124

ISSN

0031-3203

Identifier

10.1016/j.patcog.2015.03.011

Publisher

Elsevier

Share

COinS