Publication Type
Journal Article
Version
publishedVersion
Publication Date
11-2018
Abstract
Taking a picture of delicious food and sharing it in social media has been a popular trend. The ability to recommend recipes along will benefit users who want to cook a particular dish, and the feature is yet to be available. The challenge of recipe retrieval, nevertheless, comes from two aspects. First, the current technology in food recognition can only scale up to few hundreds of categories, which are yet to be practical for recognizing tens of thousands of food categories. Second, even one food category can have variants of recipes that differ in ingredient composition. Finding the best-match recipe requires knowledge of ingredients, which is a fine-grained recognition problem. In this paper, we consider the problem from the viewpoint of cross-modality analysis. Given a large number of image and recipe pairs acquired from the Internet, a joint space is learnt to locally capture the ingredient correspondence between images and recipes. As learning happens at the regional level for image and ingredient level for recipe, the model has the ability to generalize recognition to unseen food categories. Furthermore, the embedded multi-modal ingredient feature sheds light on the retrieval of best-match recipes. On an in-house dataset, our model can double the retrieval performance of DeViSE, a popular cross-modality model but not considering region information during learning.
Keywords
Recipe retrieval, Cross-modal retrieval, Multi-modality embedding
Discipline
Computer Sciences | Graphics and Human Computer Interfaces
Research Areas
Intelligent Systems and Optimization
Publication
Multimedia Tools and Applications
Volume
77
Issue
22
First Page
29457
Last Page
29473
ISSN
1380-7501
Identifier
10.1007/s11042-018-5964-y
Publisher
Springer (part of Springer Nature): Springer Open Choice Hybrid Journals
Citation
1
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.