Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
2-2021
Abstract
Node classification is an important problem on graphs. While recent advances in graph neural networks achieve promising performance, they require abundant labeled nodes for training. However, in many practical scenarios there often exist novel classes in which only one or a few labeled nodes are available as supervision, known as few-shot node classification. Although meta-learning has been widely used in vision and language domains to address few-shot learning, its adoption on graphs has been limited. In particular, graph nodes in a few-shot task are not independent and relate to each other. To deal with this, we propose a novel model called Relative and Absolute Location Embedding (RALE) hinged on the concept of hub nodes. Specifically, RALE captures the task-level dependency by assigning each node a relative location within a task, as well as the graph-level dependency by assigning each node an absolute location on the graph to further align different tasks toward learning a transferable prior. Finally, extensive experiments on three public datasets demonstrate the state-of-the-art performance of RALE.
Keywords
graph neural networks, few-shot learning, novel classes on graph
Discipline
Artificial Intelligence and Robotics | Databases and Information Systems
Research Areas
Data Science and Engineering
Publication
Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual Conference, 2021 February 2-9
First Page
4267
Last Page
4275
Publisher
AAAI
City or Country
Virtual Conference
Citation
LIU, Zemin; FANG, Yuan; LIU, Chenghao; and HOI, Steven C. H..
Relative and absolute location embedding for few-shot node classification on graph. (2021). Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual Conference, 2021 February 2-9. 4267-4275.
Available at: https://ink.library.smu.edu.sg/sis_research/6178
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.