"Social influence does matter: User action prediction for in-feed adver" by Hongyang WANG, Qingfei MENG et al.
 

Publication Type

Conference Proceeding Article

Version

publishedVersion

Publication Date

2-2020

Abstract

Social in-feed advertising delivers ads that seamlessly fit insidea user’s feed, and allows users to engage in social actions(likes or comments) with the ads. Many businesses payhigher attention to “engagement marketing” that maximizessocial actions, as social actions can effectively promote brandawareness. This paper studies social action prediction for infeedadvertising. Most existing works overlook the social influenceas a user’s action may be affected by her friends’actions. This paper introduces an end-to-end approach thatleverages social influence for action prediction, and focuseson addressing the high sparsity challenge for in-feed ads. Wepropose to learn influence structure that models who tendsto be influenced. We extract a subgraph with the near neighborsa user interacts with, and learn topological features ofthe subgraph by developing structure-aware graph encodingmethods.We also introduce graph attention networks to learninfluence dynamics that models how a user is influenced byneighbors’ actions.We conduct extensive experiments on realdatasets from the commercial advertising platform ofWeChatand a public dataset. The experimental results demonstratethat social influence learned by our approach can significantlyboost performance of social action prediction.

Discipline

Numerical Analysis and Scientific Computing

Research Areas

Data Science and Engineering

Publication

Thirty-Fourth AAAI Conference on Artificial Intelligence

Identifier

https://doi.org/10.1609/aaai.v34i01.5357

City or Country

New York

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 9
  • Usage
    • Downloads: 25
    • Abstract Views: 18
  • Captures
    • Readers: 36
see details

Share

COinS