Publication Type

Journal Article

Version

publishedVersion

Publication Date

4-2016

Abstract

The particle bound mercury (PBM) in urban-industrial areas is mainly of anthropogenic origin, and is derived from two principal sources: Hg bound to particulate matter directly emitted by industries and power generation plants, and adsorption of gaseous elemental mercury (GEM) and gaseous oxidized mercury (GOM) on air particulates from gas or aqueous phases. Here, we measured the Hg isotope composition of PBM in PM10 samples collected from three locations, a traffic junction, a waste incineration site and an industrial site in Kolkata, the largest metropolis in Eastern India. Sampling was carried out in winter and monsoon seasons between 2013–2015. The objective was to understand whether the isotope composition of the PBM represents source composition. The PBM collected from the waste burning site showed little mass independent fractionation (MIF) (Δ199Hg = +0.12 to -0.11‰), similar to the signature in liquid Hg and Hg ores around the world with no seasonal variations. Samples from the industrial site showed mostly negative MDF and MIF (δ202Hg = -1.34 to -3.48 ‰ and Δ199Hg = +0.01 to -0.31‰). The MDF is consistent with PBM generated by coal combustion however, the MIF is 0.15‰ more negative compared to the Hg isotope ratios in Indian coals. The traffic junction PBM is probably not produced in situ, but has travelled some distances from nearby industrial sources. The longer residence time of this PBM in the atmosphere has resulted in-aerosol aqueous photoreduction. Thus, the MIF displays a larger range (Δ199Hg = +0.33 to -0.30‰) compared to the signature from the other sites and with more positive values in the humid monsoon season. Different Hg isotopic signature of PBM in the three different sampling locations within the same city indicates that both source and post emission atmospheric transformations play important roles in determining isotopic signature of PBM.

Keywords

Particle Bound Mercury, Mass Dependent Fractionation, Mass Independent Fractionation

Discipline

Environmental Sciences | Numerical Analysis and Scientific Computing

Research Areas

Software and Cyber-Physical Systems

Publication

Elementa: Science of the Anthropocene

Volume

4

First Page

1

Last Page

12

ISSN

2325-1026

Identifier

10.12952/journal.elementa.000098

Publisher

University of California Press

Embargo Period

6-23-2021

Copyright Owner and License

Authors

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Additional URL

https://doi.org/10.12952/journal.elementa.000098

Share

COinS