Publication Type
Journal Article
Version
acceptedVersion
Publication Date
12-2015
Abstract
The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.
Keywords
Clustering, Big social media data, Adaptive Resonance Theory, Vigilance region, Adaptive parameter tuning
Discipline
Computer and Systems Architecture | Databases and Information Systems | OS and Networks
Research Areas
Data Science and Engineering
Publication
IEEE Transactions on Neural Networks and Learning Systems
Volume
27
Issue
12
First Page
2656
Last Page
2669
ISSN
2162-237X
Identifier
10.1109/TNNLS.2015.2498625
Publisher
Institute of Electrical and Electronics Engineers
Citation
MENG, Lei; TAN, Ah-hwee; and WUNSCH, Donald C..
Adaptive scaling of cluster boundaries for large-scale social media data clustering. (2015). IEEE Transactions on Neural Networks and Learning Systems. 27, (12), 2656-2669.
Available at: https://ink.library.smu.edu.sg/sis_research/5235
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/TNNLS.2015.2498625
Included in
Computer and Systems Architecture Commons, Databases and Information Systems Commons, OS and Networks Commons